A New Approach to Asymmetric Synthesis of Stork's Prostaglandin Intermediate

Makoto Nakazawa, Yasuharu Sakamoto, and Takashi Takahashi*

Katsuhiko Tomooka, Katsuya Ishikawa, and Takeshi Nakai*

Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, JAPAN

Summary: A stereocontrolled approach to asymmetric synthesis of Stork's prostaglandin intermediate **3** has been developed which involves the [2,3]-Wittig rearrangement and the Pd(II)-catalyzed allylic acetate rearrangement as the key steps.

Among many synthetic intermediates for natural and unnatural prostaglandins, ¹) the Stork intermediate 3^{2} is undoubtedly an ideal one. Recently, one of the author groups has reported two entries for 3; one employs the three-component coupling process using vinylzincate $2^{3,4}$ instead of the vinylcuprate and the other one is based on the intramolecular (3+2)-cycloaddition of nitrile oxide 4.5 In these syntheses, the two stereogenic centers C11(R) and C15(S) are employed. Herein we disclose a new strategy (Scheme 1), wherein the C11(R) chirality in 5 derived from the commercially available cyclopentenone 1 is exploited to control the rest of chiralities in 3 via the [2,3]-Wittig rearrangement⁶ ($5 \rightarrow 6$) and the Pd(II)-catalyzed allylic rearrangement⁷) ($6 \rightarrow 7$).

(Scheme 1)

The key features of the present synthesis are two-fold. First, the [2,3]-Wittig rearrangement of **5** proceeds in a highly stereoselective fashion to establish the C12(R) and C13(R) configurations, together with the formation of the C8-exocyclic double bond in **6**. Second, the C13(R) chirality thus created is specifically transmitted to the desired C15(S) chirality in **7** by means of the Pd(II)-catalyzed rearrangement of the allylic acetate **6**. Thus, the overall transformation permits ready access to the desired configurations at C12, C13 and C15, as well as the required exo-methylene at C8.

The propargylic ether **5b**, serving as a precursor to the prostaglandin skeleton, was prepared as outlined in Scheme 2. Reaction of (+)-enone 1 (>99% ee) with bromine (CCl4, 0 °C) followed by treatment of the resulting dibromide with triethylamine gave bromoenone **8** which was then reduced (NaBH4/CeCl3•7H2O⁸), MeOH, -20 °C) to afford a mixture of the 9 α - and 9 β -alcohol **9** (9 α : 9 β = 86 : 14) in 96% overall yield. Without separation of these isomers, **9** was converted to the allylic alcohol **10** in 75% overall yield via protection of the hydroxy group in **9** with ethyl vinyl ether and generation of the vinylic lithium (*n*-BuLi, THF, -78 °C) followed by addition of formaldehyde. Etherification of **10** with propargylic iodide **11** (KOH/*n*-Bu4NI, benzene, 0 °C; 92%) followed by removal of the ethoxyethyl group (PPTS, MeOH; 56%) gave, after separation of the C9-epimer, the 9 α -alcohol **5a**⁹) which was treated with *t*-butyldimethylsilyl chloride (TBSCI) to give ether **5b** in 92% yield.

The [2,3]-Wittig rearrangement of **5b** was carried out with t-BuLi under the standard conditions (THF, -78 °C, 1h) to afford a mixture of the stereoisomers **12** and **13** (75 : 25) in 78% yield.¹⁰⁾ To improve the stereoselectivity in the [2,3]-Wittig process, we chose the trimethysilyl(TMS) derivative **5c** as the substrate which was prepared from **10** in four steps¹¹ (Scheme 3). The [2,3]-Wittig rearrangement of **5c** with *n*-BuLi was found to afford 90% yield of the single stereoisomer **14** which was then converted to the amyl derivative **12** as follows. Selective deprotection of the TMS group of **14** (AgNO₃, EtOH; 83%) followed by protection of the hydroxy group with 2-methoxypropene gave alkyne **15**. Alkylation of **15** (*n*-BuLi, THF/HMPA, *n*-C₅H₁₁I, -20

°C) followed by deprotection of the acetal moiety (PPTS, MeOH, 0 °C) afforded the amyl derivative 12 in 89% vield.

Construction of the ω -side chain from the [2,3]-Wittig product **12** was carried out via the Pd(II)-catalyzed 1,3-rearrangement¹²) of allylic acetate 6. Acetate 6 was prepared in 78% yield from 12 by trans reduction of the triple bond (Red-Al[®], 40 °C) followed by acetylation (Ac₂O, Py). The Pd(II)-catalyzed rearrangement of **6** [PdCl2(MeCN)2 (4 mol%), THF, reflux] gave rise to a 27 : 73 mixture¹³) of the allylic acetates 6 and 7^{14} in 86% combined yield. In this rearrangement, neither the C13(Z)nor the $C_{15}(R)$ -isomers was detected. Conversion of 7 to Stork's intermediate 3 (R=TBS) required two operations; (1) reprotection of the allylic acetate to the TBS group and (2) selective oxidation of the 9-hydroxyl to carbonyl group. Thus, hydrolysis of the acetate group of 7 (K2CO3, MeOH) followed by protection of the resulting alcohol (TBSCl, imidazole) gave the tri-TBS derivative 16 in 80% overall yield. Acid treatment of 16 (80% aq. AcOH, r.t.) produced a mixture of the di-TBS derivatives (C11,15-di-TBS : $C_{9,11}$ -di-TBS = 2 : 1). The desired 9-hydroxy derivative was isolated and oxidized (MnO₂ , n-hexane) to furnish the desired enone 3 in 75% yield. The spectral data (NMR, IR) of **3** are identical with the literature values 2g Further improvement of the present approach is in progress.

Acknowledgment. We are grateful to Sumitomo Chemical Co. and Teijin Co. for providing the optically active enone 1.

References and Notes:

- 1) a) Bindra, J. S.; Bindra, R. Prostaglandin Synthesis; Academic Press: New York, 1977. b) Mitra, A. Synthesis of Prostaglandin; Wiley-Interscience: New York, 1977.
- a) Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 4745. b) Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 6260. c) Stork, G.; Kraus, G. J. Am. Chem. Soc. 1976, 98, 6747. d) Kondo, K.; Umemoto, T.; Yako, K.; Tunemoto, D. Tetrahedron Lett. 1978, 41, 3927. e) Shwartz, J.; Loots, M. J.; Kosugi, H. J. Am. Chem. Soc. 1980, 102, 1333. f) Kozikowski, A. P.; Stein, P. D. J. Org. Chem. 1984, 49, 2301. g) Okamoto, S.; Kobayashi, Y.; Kato, H.; Hori, K.; Takahashi, T.; Tsuji, J.; Sato, F. J. Org. Chem. 1988, 53, 5590.
- 3) Takahashi, T.; Nakazawa, M.; Takatori, K.; Nishimura, S.; Yamamoto K. Natural Product Lett. (1993) in press.
- PGs syntheses by using vinylzincates; a) Morita, Y.; Suzuki, M.; Noyori, R. J. Org. Chem. Soc. 1989, 54, 1785. b) Takahashi, T.; Nakazawa, M.; Kanoh, M.; Yamamoto. K. Tetrahedron Lett. 1990, 31, 7349.
- 5) Takahashi, T.; Shimayama, T.; Miyazawa, M.; Nakazawa, M.; Yamada, H.; Takatori, K.; Kajiwara, M. Tetrahedron Lett. 1992, 33, 5973.
- 6) Review: Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885.
- 7) Review: Overman, L. E. Angew. Chem., Int. Ed. Engl. 1984, 23, 579. See also ref. 12).
- 8) Luche, J. -L. J. Am. Chem. Soc. 1978, 100, 2226.
- 9) The absolute stereochemistry at C9 in 5a was determined by the CD spectrum of the p-bromobenzoate derivative; [Θ]=-5.04x10⁴ (7.88x 10⁻⁵ mol/L, 243 nm, EtOH; UV 246 nm).
- 10) The relative stereochemistry over C₁₁, C₁₂ and C₁₃ in the major product 12 was determined by the following way. The individual oxidation of 12 and 13 with MnO₂ gave the same ketone A. This result indicates that the [2,3]-Wittig rearrangement gave the single stereochemistry at C₁₂ but diasteromers at C₁₃. The absolute stereochemistry at C₁₃ in 12 was determined by the CD spectrum of the allylic benzoate B; [Θ]=-6.66x10³ (1.65x10⁻⁴ mol/L, 243 nm, EtOH; UV 244 nm).

- 11) 1) NaH, propargyl bromide, HMPA, 87%; 2) EtMgBr, TMSCl; 3) PPTS, MeOH, 41%; 4) TBSCl, imidazole, 90%.
- 12) a) Grieco, P. A.; Takigawa, T.; Bongers, S. L.; Tanaka, H. J. Am. Chem. Soc. 1980, 102, 7587. b) Danishefsky, S. J.; Cabel, M. P.; Chow, K. J. Am. Chem. Soc. 1989, 111, 3456.
- 13) Based on the assumption of a thermodynamically controlled process for the Pd(II)-catalyzed allylic acetate rerrangement, MM2 calculations on MACROMODEL (ver. 2.5) considering a Boltzman distribution at 67°C suggest that allylic acetates 6 and 7 would exist in a ratio 20 : 80. We are grateful to Professor Clark Still for providing a copy of MACROMODEL (ver. 2.5).
- 14) The absolute stereochemistry at C15 in the product 7 was determined by the CD spectrum of the pbromobenzoate derivative; [Θ]=1.78x10⁵ (4.78x10⁻⁵ mol/L, 244 nm, EtOH; UV 244 nm).